propyl-10-ethylidene-9,10-dihydroanthracene (6b) (42%). The latter structure was based on the nmr spectrum of the crude reaction product which showed a quartet at δ 6.09 (J = 7.5 Hz, vinylic) and a doublet at δ 2.12 ppm (J = 7.5 Hz, CH₃CH=) and formation of 9-isopropyl-10-ethylanthracene from acid-catalyzed rearrangement of the crude product. Isomerization took place under the conditions employed in the preceding example to afford a crude product (0.61 g) shown by glpc and nmr to contain 9-isopropyl-10-ethylanthracene (40%). Chromatography on alumina followed by crystallization from petroleum ether gave pure 9isopropyl-10-ethylanthracene: mp 110-111°; nmr (CCl₄) δ 1.45(t, 3, J = 7.5 Hz, CH_3CH_2), 1.75 (d, 6, J = 7.5 Hz, $(CH_3)_2CH$), 3.59 (q, 2, J = 7.5 Hz, CH₃CH₂), 4.53 (heptet, 1, J = 7.5 Hz, (CH₃)₂CH), 7.1-7.5 (m, 4, aromatic), and 8.1-8.5 ppm (m, 4, aromatic).

Anal. Calcd for C19H20: C, 91.88; H, 8.12. Found: C, 91.81; H. 8.23.

Dehydrogenation of trans-9,10-Diisopropyl-9,10-dihydroanthracene (trans-5c). Similar reaction of trans-5c (0.66 g, 2.5 mmol) gave a crystalline product (0.65 g) shown to contain two components, cis-5c and 9-isopropyl-10-isopropylidene-9,10-dihydroanthracene (6c), in the ratio of 2:1 by nmr analysis in comparison with the authentic compounds, 35

Epimerization of trans-5c to cis-5c. Similar reaction of trans-5c with the substitution of water (5 ml) for the cadmium salt afforded a product shown by nmr analysis to contain >95% cis-5c. Recrystallization from petroleum ether gave colorless crystals (0.55 g) of pure cis-5c: mp 114.5-115.5° (lit. 20, 21 116.5-117° and 109-110°); nmr (CCl₄) δ 0.99 (d, 12, J = 6 Hz, (CH₃)₂CH), 1.40–2.10 (m, 2, $(CH_3)_2CH$, 3.30 (d, 2, J = 9.5 Hz, benzylic), and 7.06 ppm (apparent s, 8, aromatic).

Acknowledgment. This research was supported by U. S. Public Health Service Grant CA 11968. The technical assistance of Mrs. Leticia Nazareno in the early part of this work is also gratefully acknowledged.

(35) In an earlier report^{17b} from this laboratory the cis.5c structure was assigned to the product of reductive diisopropylation of anthracene with lithium and isopropyl chloride in liquid ammonia in analogy with the cis product shown to be obtained from reductive diethylation. However, it is now clear that the trans.5c structure is correct on the basis of the comparative nmr spectral analysis of both isomers by Zieger, et al.,²¹ and by Redford.²⁰ The trans.5c isomer is also furnished in high yield from reduction of 9,10-diisopropylanthracene with lithium in ammonia by the procedure reported earlier. 17a

Kinetic Applications of Electron Paramagnetic Resonance Spectroscopy. XIII. Di-tert-butylmethyl and Related Radicals¹

G. D. Mendenhall,^{2a} D. Griller,^{2b} D. Lindsay, T. T. Tidwell,³ and K. U. Ingold*

Contribution from the Division of Chemistry, National Research Council of Canada, Ottawa, Canada, and Department of Chemistry, University of Toronto, Scarborough College, West Hill, Ontario. Received September 20, 1973

Abstract: Di-tert-butylmethyl, B₂CH, and a wide variety of related radicals, e.g., B₃C, B₂CCH₂C₆H₅, B₂CCH₂P-(O)(OEt)₂, etc., are extremely long lived when compared with less highly substituted alkyl radicals. They show no sign of dimerizing even at low temperatures. At ambient temperatures these radicals decay with first-order kinetics and Arrhenius parameters for these reactions are reported. The decay mechanism could not be unequivocally established but it is believed to be either a β scission (e.g., B₂CH \rightarrow B(H)C=CMe₂ + Me·) or a 1,3-intramolecular hydrogen atom transfer (e.g., $B_2CH \rightarrow BCH_2CMe_2CH_2$). At low temperatures most B_2CCH_2R radicals decay with second-order kinetics, presumably yielding the disproportionation products, B_2CHCH_3R and $B_2C=CHR$.

Tt has recently been shown that nonconjugated carbon-centered radicals having bulky alkyl groups attached to the radical center possess remarkably long lives.⁴ For example,⁴ a 10^{-5} M solution of di-tertbutylmethyl prepared by hydrogen abstraction, by tert-butoxy, from the parent hydrocarbon has a half-life of about a minute at room temperature.⁵ We now report in more detail on the decay kinetics of this radical and on the decay of a number of structurally related radicals containing the di-tert-butylmethyl moiety.

In this paper B is used to represent the tert-butyl group.

(1) Issued as N.R.C.C. No. 13,899. Part XII: D. Griller and K. U. Ingold, J. Amer. Chem. Soc., 95, 554 (1973).

(2) (a) N.R.C.C. Postdoctoral Fellow, 1971-1973. (b) N.R.C.C. Postdoctoral Fellow, 1973-1974. (3) University of Toronto.

(4) G. D. Mendenhall and K. U. Ingold, J. Amer. Chem. Soc., 95, 3422 (1973).

(5) In contrast, similar concentrations of less hindered carbon-

centered radicals decay completely in a few milliseconds.⁶ (6) See, e.g., G. B. Watts and K. U. Ingold, J. Amer. Chem. Soc., 94, 491 (1972).

Experimental Section

The general experimental technique has been adequately described in previous papers from this laboratory.1,4,6

Radical Generation. With one exception (vide infra), kinetic studies were carried out on radicals $(\mathbf{R} \cdot)$ generated photolytically, directly in the cavity of a Varian E-3 epr spectrometer. The following methods were used.

A. Photolysis of a di-tert-butyl peroxide (BOOB) solution of RH.

BOOB
$$\xrightarrow{h\nu}$$
 2BO ·

$$BO \cdot + RH \longrightarrow BOH + R \cdot$$

B. Photolysis of a mixture of hexamethylditin and RCl.

 $Me_3SnSnMe_3 \longrightarrow 2Me_3Sn \cdot$ $Me_3Sn \cdot + RCl \longrightarrow Me_3SnCl + R \cdot$

C. Photolysis of a mixture of BOOB, a trialkylsilane (generally Me₃SiH), and RCl.

$$BO \cdot + Me_3SiH \longrightarrow BOH + Me_3Si \cdot$$
$$Me_3Si \cdot + RCl \longrightarrow Me_3SiCl + R \cdot$$

Ingold, et al. | Di-tert-butlymethyl and Related Radicals

D. Method A, B, or C carried out in the presence of 1,1-di-tertbutylethylene.7

$$R \cdot + B_2 C = CH_2 \longrightarrow B_2 \dot{C} CH_2 R$$

E. Photolysis of a tert-butyl perester.

$$\begin{array}{c} \mathbf{O} \\ \parallel \\ \mathbf{R} \end{array} \begin{array}{c} hv \\ \hline \mathbf{R} \cdot + \mathbf{CO}_2 + \mathbf{BO} \cdot \end{array}$$

For all five methods an inert cosolvent such as benzene or cyclopropane was sometimes present.8

Method A was most suitable for kinetic studies but generally gave poorer epr spectra than the other methods (see below). This method rarely generated the radical cleanly and additional radicals could frequently be detected that arose from BO. attack on hydrogens other than those of interest. For example, with B₂CH₂ not only was B2CH obtained but also a spectrum attributable to the B2CH2CMe2CH2 radical. The latter radical (and other "secondary" radicals formed from other hydrocarbons) decayed almost instantly when the light was cut off6 and so did not interfere with the decay of the long-lived radicals we wished to study.

Epr Spectra. The epr spectral parameters for the radicals studied in this work have been reported^{4,7} and discussed in some detail7 previously. We feel confident from these parameters that each radical has the structure assigned to it.9

One feature of the epr spectra that we are unable to account for with certainty is the very much poorer resolution obtained by method A than by any other method. Thus, with B₂CH the splittings due to the methyl protons are very readily detected at room temperature using methods B, C, and E, but method A gives only the two broad lines due to splitting by the α -H with small shoulders due to the methyl protons being just detectable. It is possible that this difference is due to a reduced rate of tumbling of $B_2\dot{C}H$ in the medium used in method A since a sample of B_2CH_2 in BOOB (under N_2) gave a weak but well resolved spectrum of $B_2\dot{C}H$ on heating to 140°. The intensity of this signal could be improved by photolysis. Photolysis at room temperature yielded a much higher radical concentration but without the fine structure.

A similar effect was observed with $B_3\dot{C}$. That is, a strong, wellresolved spectrum was obtained by method B or C at room temperature. However, method A at room temperature gave a spectrum of three rather broad lines that might quite easily be mistaken for a 1:2:1 triplet. These broad lines could be readily resolved to show fine structure by heating the sample above 70°, photolysis no longer being necessary, and an excellent spectrum was obtained at 100°. At this temperature, it is quite obvious that the hyperfine splitting of the outer pair of lines is somewhat greater (0.68 G) than of the central line (0.51 G). On cooling to 40° the outer lines are destroyed and the inner line decays to about half its initial height in the first minute and then continues to decay at a similar rate. Clearly the inner line and outer pair of lines are due to different radicals. The epr parameters indicate that they are B₃C and B₂CH, respectively. The process by which B_2CH is formed must be BO. attack on B₃CH, since no radicals were detectable when B₃CH was heated to 100° in benzene and photolyzed.

$$BO \cdot + B_3CH \xrightarrow{P_3\dot{C}} B_2\dot{C}HCMe_2\dot{C}H_2 \longrightarrow B_2\dot{C}H + Me_2C = CH_2$$

At -40° under continuous irradiation a very weak pair of lines outside those due to B2CH were detectable which may well have been due to the intermediate B₂CHCMe₂CH₂, $a_{\rm H} \sim 21$ G.

Reagents. Carefully purified commercial materials were utilized except as noted below. In reporting ¹H and ¹³C nmr spectra the chemical shifts are given in parts per million downfield from tetramethylsilane.

Di-tert-butylmethyl chloride, B2CHCl, was prepared by the method of Kharasch, et al.¹⁰ Reaction of B₂CHOH with phosgene yielded the chloroformate, B₂COC(O)Cl (n^{22.5}D 1.4382, lit.¹⁰ n²⁰D

(7) D. Griller and K. U. Ingold, J. Amer. Chem. Soc., 95, 6459

(1973), and unpublished results.(8) Sceptic, "Getting reliable radical decay kinetics out of that mix. ture must be like trying to find a needle in a compost heap." Author, "It would be, if we did not use a magnet."

(9) For a recent example of a structural assignment problem with a carbon radical, see F. A. Neugebauer and W. R. Groh, Tetrahedron Lett., 1005 (1973), and A. R. Bassindale, A. J. Bowles, A. Hudson, and R. A. Jackson, *ibid.*, 3185 (1973)

(10) M. S. Kharasch, Y. C. Liu, and W. Nudenberg, J. Org. Chem., 19, 1150 (1954).

Journal of the American Chemical Society | 96:8 | April 17, 1974

1.4400), and this was decomposed thermally to the required chloride which was purified by preparative vpc (n²²D 1.4470, lit.¹⁰ n²⁰D 1.4475; ¹H nmr, in isopentane, B₂CHCl, 3.55).

tert-Butylperoxy di-tert-butylacetate, B2CHC(O)OOB, was prepared as previously reported.11

1,1,3,3,5,5-Hexamethylcyclohexane, (Me₂CCH₂)₃, was prepared from 1,3,3,5,5-pentamethylcyclohexanol (Chemical Samples Co.) following literature procedures12 and was purified by preparative vpc. The boiling point (183° at atmospheric pressure), freezing point (-13°), refractive index (n^{20} D 1.4460), and ¹H nmr (CH₃ 0.99, CH₂ 2.00) were identical with literature¹² values.

Tri-tert-butylmethane, B₃CH, was prepared by Lee's method¹³ except that the tri-tert-butylcarbinol, B3COH, was isolated and purified prior to its conversion to tri-tert-butylcarbinyl p-nitrobenzoate.

Tri-tert-butylmethyl chloride, B3CCl, was prepared by reacting the lithium salt of B_3COH with phosgene under argon at -25° using the same general procedure¹⁰ as for B₂CHCl. B₃COH (4.2 g, 21 mmol) in 20 cm3 of ether was added to tert-butyllithium (27 mmol) in 20 cm³ of pentane under argon at -78° . After 3 hr, 4 cm³ of phosgene (\sim 56 mmol) was distilled into the B₂COLi solution. Reaction occurred on warming to -25° at which temperature lithium chloride was precipitated. The solution was warmed to room temperature and the organic phase washed with water and dried over anhydrous Na₂SO₄. After filtration and concentration to a yellow oil the infrared spectrum showed almost no carbonyl absorption, indicating the absence of chloroformate. However, photolysis of this oil in the presence of $Me_{6}Sn_{2}$ or of $Me_{3}SiH$ and BOOB yielded a strong epr signal for the $B_3\dot{C}$ radical. It is clear that the chloroformate is formed but is thermally unstable at, or below, room temperature (cf. B₂CHOC(O)Cl¹⁰). Analysis of the oil by vpc indicated that it contained a lot of B₃COH and perhaps other compounds but that the chloride itself was unstable under the vpc conditions. For this reason, no attempt was made to purify the B₃CCl.

$$B_{s}COH \xrightarrow{B_{Li}} B_{s}COLi \xrightarrow{COCl_{2}} [B_{s}COC(O)Cl] \longrightarrow B_{s}CCl + CO_{2}$$

Tris(trimethylsilyl)methane, (Me₃Si)₃CH, and bis(trimethylsilyl)methane, $(Me_3Si)_2CH_2$, were prepared by reaction of the Grignard of bromoform with trimethylchlorosilane following the procedure of Merker and Scott.¹⁴ The boiling point, refractive index, and nmr spectra of both compounds were virtually identical with those reported in the literature.14

Tris(trimethylsilyl)methyl bromide, (Me₃Si)₃CBr, was prepared by reaction of (Me₃Si)₃CH with N-bromosuccinimide following the procedure of Bock, et al.;¹⁵ mp (sealed tube) 190° (lit.¹⁵ 190°).

Product Studies. $B_2\dot{C}H$ from B_2CH_2 + BO . The major products that could be formed in this reaction are those of bimolecular radical reactions involving B2CH and the primary alkyl radical BCH₂CMe₂ĊH₂, *i.e.*, 1. 2, and 3, and the olefins that would be formed by β scission of B₂ĊH (*i.e.*, 4) and BCH₂CMe₂ĊH₂ (*i.e.*, isobutylene), together with tert-butyl alcohol.

$$BO \cdot + B_2CH_2 \longrightarrow BOH + BCH_2CMe_2\dot{C}H_2$$

$$BOH + B_2\dot{C}H$$

$$2BCH_2CMe_2\dot{C}H_2 \longrightarrow BCH_2CMe_2CH_2CH_2CH_2CH_2B$$

$$1$$

$$B_1\dot{C}H_1 + BCH_2CMe_2\dot{C}H_2 \longrightarrow B_2CHCH_2CMe_2CH_2B$$

$$B_{2}CH + BCH_{2}CMe_{2}CH_{2} \longrightarrow B_{2}CHCH_{2}CMe_{2}CH_{2}B$$
2

$$2B_2\dot{C}H \longrightarrow B_2CHCHB_2$$

$$3$$

$$B_2\dot{C}H \longrightarrow CH_3 + B(H)C = CMe_2$$

$$4$$

$BCH_2CMe_2\dot{C}H_2 \longrightarrow B\dot{C}H_2 + Me_2C==CH_2$

- 672 (1972).
 (12) R. Ya. Levina and V. K. Daukshas, Zh. Obshch. Khim., 30, 3207 (1960); H. Friebolin, H. G. Schmid, S. Kabuss, and W. Faisst, Org. Magn. Resonance, 1, 147 (1969).
 - (13) H. H. Lee, Thesis, University of Michigan, 1970.
- (14) R. L. Merker and M. J. Scott, J. Amer. Chem. Soc., 85, 2243 (1963); J. Organometal. Chem., 4, 98 (1965).
- (15) H. Bock, H. Seidl, and M. Fochler, Chem. Ber., 101, 2815 (1968).

⁽¹¹⁾ G. J. Abruscato and T. T. Tidwell, J. Amer. Chem. Soc., 94,

Neat B_2CH_2 (0.5 g, 3.1 mmol) was reacted with BO · radicals produced by the thermal decomposition of di-tert-butyl hyponitrite, BONNOB (0.010 g, 5.8×10^{-2} mmol). The reactants were degassed and sealed under vacuum. They were held at room temperature for 8 days, at 30° for 3 days, and finally at 50° for 1 day to ensure complete destruction of the BONNOB. In the initial stages of this reaction the rate of BO. formation would be similar to that produced by photolysis of $B_2CH_2 + BOOB$ mixtures in the epr cavity at full light intensity. The products were analyzed by vpc on an SE-30 column. In addition to unreacted B₂CH₂ there was BOH, BOOB, and two high molecular weight products that were formed in a ratio of 5:1, the more plentiful having a slightly shorter retention time (10 min vs. 14 min). The two compounds had no parent ions in their 70-eV mass spectra, but the remainder of their spectra were not inconsistent with that expected for any of the dimers 1, 2, and 3. The olefin 4 was not detected in the reaction mixture and could not have been present in a yield exceeding 1%of the major high molecular weight product. It was shown that this olefin was stable to these experimental conditions, since in a separate reaction of BONNOB with B2CH2 containing 1 % B(H)C= CMe2 under otherwise identical conditions, very little olefin was consumed. The two high molecular weight compounds were again formed together with the two new products having somewhat shorter vpc retention times. These new products may come from the coupling of radicals derived from B₂CH₂ with the olefin or with radicals derived from the olefin.

In order to isolate larger quantities of the two high molecular weight compounds for structure determination, B_2CH_2 was reacted with BOOB (2:1 mol ratio) under argon at 110° for 166 hr (*ca.* 3 half-lives of BOOB). The compounds were formed in reasonable yield but in a ratio of 2:1 rather than 5:1. They were isolated by preparative vpc. The major compound is a liquid, bp 290–300° (cap), n^{20} D 1.4490, with a molecular weight of 261 (vp osmometry), corresponding to one of the dimers 1, 2, or 3 (calcd mol wt = 254.50). The nmr spectra¹⁶ indicates that it is the highly symmetric produced by the coupling of two BCH₂CMe₂CH₂ radicals, *i.e.*, 1.

¹ ³C nmr 34.57 (32.15)₅	1 C(CH ₃) ₃	¹ H nmr (0.97 s)₃x₃
54.40	CH_2	(1.22 s) ₂
32.33 (29.06)2	C(CH ₃) ₂	(0.92 s) _{3x2}
39.04	CH_2	(1.18 s) ₂

The minor compound is also a liquid (bp $289-292^{\circ}$ (cap), $n^{20}D$ 1.4630) dimer (mol wt 261 by vp osmometry). Its nmr spectra indicate that it is produced by the coupling of a **B**CH₂CMe₂CH₂ radical with a B₂CH radical, *i.e.*, **2**.

¹³ C nmr	2	¹ H nmr
[36.54 (32.38)3]2	$[C(CH_3)_3]_2$	$(0.97 \text{ s})_{3 \times 3 \times 2}$
51.78	СН	1.16 m, J = 3.5
40.91	CH ₂	(1.39 d) ₂
a (30.99) ₂	C(CH ₃) ₂	(0.94 s) _{3×2}
59.36	CH ₂	$(1.28 s)_2$
35.45 (32.39) ₃	C(CH ₃) ₃	(0.97 s) _{3×3}

^a Probably not resolved from CH₃ groups at 32.38 and 32.39.

The primary alkyl radicals that combine to form 1 or trap B_3CH to give 2 may be formed by a direct reaction of BO with B_3CH_2 or, possibly, from B_2CH by a 1-3 intramolecular hydrogen transfer.¹⁷

 $BO_{\cdot} + B_2CH_2 \longrightarrow BOH + B_2CH \xrightarrow{\bullet} BCH_2CMe_2CH_2$

In order to determine the relative importance of these two processes, the hydrocarbon was chlorinated with *tert*-butyl hypochlorite, BOCl, the monochlorides were separated by preparative vpc, and the ratio of primary to secondary chloride was determined by nmr $(B_2CHCl, 3.55; BCH_2CMe_2CH_2Cl, 3.28)$.

The rapidity of the reaction of alkyl radicals with BOCl¹⁸ should prevent any significant rearrangement of the $B_2\dot{C}H$ radical.

Reaction of B₂CH₂ (4 ml) in CCl₄ (20 ml) containing CHClCCl₂ (1 ml)¹⁹ with BOCl (2 ml) was carried out under argon for 4 hr at room temperature with photoinitiation by a tungsten filament lamp. The monochlorides were formed in ca. 50% yield and there was little polychlorination. The ratio of primary to secondary chlorides was ca. 10:1,²⁰ and this should be approximately equal to the rates of formation of the primary and secondary alkyl radicals in the BONNOB experiment. It seems not unreasonable to assume that the rate constants for the formation of 1 (BCH₂CMe₂CH₂ coupling) and 2 (the cross-coupling reaction) will be similar (diffusion controlled), in which case the relative yields of 1 and 2 will be about 5:1 as is observed. That is, the dimeric products detected in the BONNOB experiments do not answer the question as to the mode of the slow first-order decay of B₂CH that is monitored by the epr since they can be wholly accounted for by fast-coupling and cross-coupling reactions. It would appear that the "residual" amount of B₂CH that decays slowly (because it is not trapped by the primary alkyl radical) is relatively small, at least in the BONNOB experiment where the radicals are being formed continuously. Our failure to detect the olefin 4 does not, therefore, necessarily exclude a slow β scission of "residual" B₂CH in the discontinuous epr experiments. Decay of "residual" B2CH by a 1.3 intramolecular hydrogen transfer is also consistent with these product studies.

 B_2CH from $B_2CHC1 + Na$. In an attempt to generate B_2CH uncontaminated by the primary alkyl radical, neat B₂CHCl (0.30 g, 1.8 mmol) was stirred with finely divided sodium (0.10 g, 4.4 mmol) under argon for 6 days at room temperature and then 1 day at 50°. The pasty reaction mixture was diluted with cyclopentane, the excess sodium was destroyed with water, and the organic layer was washed with water and then dried over Na₂SO₄. Analysis by vpc indicated that all the chloride had reacted. No 4 was detected (though a small amount was produced at higher temperatures⁴) nor were compounds 1 or 2 formed, but B_2CH_2 was formed in 5–10% yield. The only other product (or products) was thermally unstable at the vpc temperatures (200-240°) used to analyze for 1 and 2. However, vpc analyses on a short (3 ft) silicone-rubber column at 150° showed a single peak with a retention time of 31.5 min. (Under the same conditions 1 took 16.5 min and 2 24 min). Mass spectrometry indicated that this peak was due to a hydrocarbon that did not give a parent ion. Removal of the volatiles by mechanical pumping gave 0.12 g of crystals in a yellow oil. Chromatography on a short silica column with hexane as elutant, followed by recrystallization from MeOH, yielded 0.045 g of white crystals, mp 168-172°, with considerable softening and fusion of the crystals at temperatures well below the melting point. The molecular weight (vp osmometry) of this compound was 257 which suggests that it is the remaining dimer 3 (calcd mol wt = 254.50). The ¹H and ¹³C nmr spectra of this compound show resonances from two types of methyl groups, one type of methine group and two types of quaternary carbon atoms in the ratio 3:3:1:1:1. In CDCl₃ at room temperature the chemical shifts are: CH₃, 1.13 s; CH₃, 1.23 s; CH, 2.30 s; CH₃, 35.64; CH₃, 36.05; C_{quat}, 37.01; C_{quat}, 39.61; CH, 58.37. While various conformations of 3 could produce equivalent methine groups and nonequivalent tert-butyl groups, molecular models suggest that in the least hindered, staggered conformation 3a the tert-butyl groups cannot rotate because their methyl groups are interlocked, 3b. The methyl groups themselves should, however, be able to rotate freely. In such a rigid conformation one methyl group of each tert-butyl lies approximately

⁽¹⁶⁾ We are indebted to Dr. I. C. P. Smith for help in interpretation of the ${}^{13}C$ spectra. The chemical shifts for both ${}^{1}H$ and ${}^{13}C$ are given in parts per million downfield from TMS.

⁽¹⁷⁾ The occurrence or otherwise of 1-3 H shifts is still a matter in dispute; see, e.g., R. Kh. Freidlina, Advan. Free Radical Chem., 1, 211 (1965); J. W. Wilt, "Free Radicals," Vol. I, J. K. Kochi, Ed., Wiley, New York, N. Y., 1973, Chapter 8.

⁽¹⁸⁾ K. U. Ingold in "Free Radicals," Vol. I, J. K. Kochi, Ed., Wiley, New York, N. Y., 1972, Chapter 2.

⁽¹⁹⁾ To "mop-up" chlorine atoms, cf. C. Walling and J. A. Mc-Guiness, J. Amer. Chem. Soc., 91, 2053 (1969); A. A. Zavitsas and J. D. Blank, *ibid.*, 94, 4603 (1972).

⁽²⁰⁾ For comparison, this ratio is 4.5:1 and 1:1 for photochlorination by chlorine in CCl₄ and in 4 *M* benzene in CCl₄, respectively: G. A. Russell and P. G. Haffley, *J. Org. Chem.*, 31, 1869 (1966). The predominant attack on the primary hydrogens by BO \cdot (which is normally more selective than Cl) is probably due to steric factors.

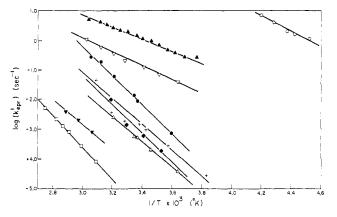
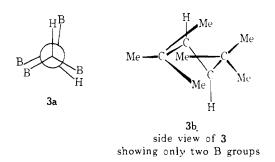



Figure 1. Arrhenius plots for the first-order decay of di-*tert*butylmethyl and related radicals: $(\Box)(Me_3Si)_3\dot{C}$; $(\bigtriangledown) B_2\dot{C}CH_2C_5H_5$; $(\triangle) Me_6$ -cyclohexyl; $(\spadesuit) B_3\dot{C}$; $+ Me_6$ -cyclohexyl; $(\spadesuit) B_2\dot{C}H_3$; $(\bigtriangledown) B_2\dot{C}CH_2P(O)(OEt)_2$; $(\blacktriangle) B_2\dot{C}CH_2SiBu_3^n$; $(\bigcirc) B_2\dot{C}CH_2SCF_3$.

in the plane defined by the four quaternary carbon atoms while the other two methyl groups make an angle of 60° with this plane, nursing between themselves the "coplanar" methyl group of the next *tert*-butyl. In this way two types of quaternary carbon are produced, one having the "coplanar" methyl pointing in approximately the same direction as the central C-C bond and the other with the "coplanar" methyl pointing approximately perpendicular to this bond (see **3b**). This model produces four types of methyl groups in a 2:1:2:1 ratio but, to account for the nmr spectra, these must fortuitously be magnetically equivalent in triads (3:3). The barrier to rotation of the *tert*-butyl groups must be fairly high since the ¹H nmr spectrum at 120° in CHCl₂CHCl₂ is the same as the room-temperature spectrum.

We suggest that *if* this compound is indeed **3** that it is formed *via* the sequence

$$B_2CHCl + Na \longrightarrow B_2CH + Cl^-Na^+$$
$$B_2CH + Na \longrightarrow B_2CH^-Na^+$$
$$B_2CH^-Na^+ + B_2CHCl \longrightarrow B_2CHCHB_2 + Cl^-Na^+$$

rather than by the coupling of $B_2\dot{C}H$ radicals. All the steps in this scheme are likely to be extremely fast.²¹ The low thermal stability of **3** is not entirely unexpected.²²

 $(Me_3Si)_3C$. Determined attempts were made to isolate this radical since it was the most stable carbon-centered radical discovered²³ in this work⁴ but without success. None of the following procedures yielded sufficient concentration of radicals to justify further work along the same lines: reaction of $(Me_3Si)_3CBr$ with (i) sodium, (ii) potassium, (iii) sodium-potassium alloy, (iv) zinc, (v) magnesium, (vi) mercury, and (vii) hexamethylditin. There was no reaction between $(Me_3Si)_3CBr$ and (i) cuprous bromide, (ii) silver, and (iii) the solvated electron, e_{aq}^- , nor did $(Me_3Si)_3CH$ react with silver oxide. Photolysis of $[(Me_3Si)_3C]_2Hg$ in hexane yielded the desired radicals, but they were of short lifetime. Attempts to carboxylate $(Me_3Si)_3CMgBr$ (with the object of preparing the acyl peroxide) were also unsuccessful. We are indebted to Dr. Din Lal for these studies.

Di-tert-butylmethyl radicals, $B_2\dot{C}H$, generated at concentrations in the range 10^{-5} to 10^{-6} M by methods A, B, C, and E had somewhat different half-lives $(\tau_{1/2})$. Method A ($B_2CH_2 + BOOB$, ca. 1:1 by volume) gave long-lived radicals. Decays followed "clean" first-order kinetics (after the first 0.1–1.0 sec required to destroy the $B_2CH_2CM_2\dot{C}H_2$ radical). The half-life at room temperature was unaffected by the initial $B_2\dot{C}H$ concentration (from ca. 2×10^{-5} to 5×10^{-7} M) and was not significantly altered (<5%) by dilution of a $1:1 \text{ v/v } B_2CH_2:BOOB$ mixture with 5 parts of benzene or CFCl₃. The half-life was also independent of the $B_2CH_2:BOOB$ ratio in the absence of solvent (from 1:5 to 5:1 v/v). In the temperature range $5-55^{\circ}$ the decay can be represented by ²⁴

$$B_2\dot{C}H \xrightarrow{\kappa^1 epr} products$$

with $k_{epr}^{1}(sec^{-1}) = (10^{14.9\pm1.5}) (10^{-22.9\pm2.0/\theta}), \tau_{1/2}^{23^{\circ}} = 58$ sec, where $\theta = 2.3RT$ kcal/mol (see Figure 1 and Table I).

Method B (B₂CHCl + Me₆Sn₂, ca. 2:1 by volume) gave slightly curved first-order decay plots suggesting that there may have been some small contribution to decay from a kinetically second-order process. At initial B₂CH concentrations of 1×10^{-6} and 6×10^{-6} $M \tau_{1/2}{}^{25^{\circ}}$ values were 2.2 and 1.8 sec, respectively. Since it seemed likely that the decay process involved hydrogen abstraction from the hexamethylditin, these decay kinetics were not examined further.

Method C (B₂CHCl + Me₃SiH + BOOB, ca. 1:1:1 by volume) also gave somewhat curved firstorder decay plots. At initial B₂CH concentrations of 1.5×10^{-6} and $1 \times 10^{-5} M$, $\tau_{1/3}^{25^{\circ}}$ values were 0.85 and 0.35 sec, respectively. Presumably, the B₂CH radical attacks the silane (at the Si-H bond) even more readily than it attacks Me₆Sn₂. These decay kinetics were not further examined.

Method E (B₂CHC(O)OOB) gave reasonably good first-order decay kinetics. However, at a constant light intensity dilution with benzene gave both higher concentrations of radicals and increasing half-lives (see Table II). It seems very probable that this perester, like so many other peroxidic compounds, undergoes a radical-induced decomposition²⁵ and so does not provide a useful source of B₂CH for kinetic studies.

2,2,4,6,6-Pentamethylcyclohexyl radical, Me₅ cyclohexyl, is a cyclic analog of B₂CH. The radicals were generated only by method A and concentrations in the range 10^{-5} to 10^{-6} M were readily obtained. The radicals were fairly long-lived as expected and decayed with first-order kinetics (with perhaps a small second-order component) at rates comparable to those found for B₂CH (see Figure 1).

2,2,4,4,6,6-Hexamethylcyclohexyl radical, Me_6 cyclohexyl, was "cleanly" prepared by method A. (This is not quite the case for pentamethylcyclohexyl, presumably because the BO attacks the parent hydrocarbon

⁽²¹⁾ Cf. J. F. Garst, Accounts Chem. Res., 4, 400 (1971).

⁽²²⁾ Cf. H. D. Beckhaus and C. Rüchardt, Tetrahedron Lett., 1971 (1973).

⁽²³⁾ A. R. Bassindale, A. J. Bowles, M. A. Cook, C. Eaborn, A. Hudson, R. A. Jackson, and A. E. Jukes, Chem. Commun., 559 (1970).

⁽²⁴⁾ This Arrhenius equation has been revised from that originally given⁴ as a result of further work.

given^{*} as a result of further work. (25) For leading references, see C. Walling, "Free Radicals in Solutions," Wiley, New York, N. Y., 1957; A. G. Davies, "Organic Peroxides," Butterworths, London, 1961; D. Swern, "Organic Peroxides," Wiley, New York, N. Y., 1970, 1971; T. Koenig in "Free Radicals," Vol. 1, J. K. Kochi, Ed., Wiley, New York, N. Y., 1973.

Table I. Kinetic Parameters for the Decay of Di-tert-butylmethyl and Related Radicals

Radical	Method of formation	$ au_{1/2}^{25\circ}$, sec	$\log A_{epr}^{1}$, sec ⁻¹	E^{1}_{epr} , kcal/mol	$(k^{2}_{ep1})^{-50}$ °, M^{-} sec ⁻¹
B ₂ ĊH	Α	58	14.9 ± 1.5	22.9 ± 2.0	
Me ₅ cyclohexyl	А	280	12.2 ± 2.3	20.2 ± 3.0	
Me ₆ cyclohexyl	А	99 0	11.0 ± 1.5	19.3 ± 2.0	
B₃Ċ	A^a	530	13.5 ± 4.0	22.3 ± 5.0	
(Me ₃ Si) ₃ Ċ	А	190,000	12.3 ± 1.5	24.1 ± 2.0	
(Me ₃ Si) ₂ ĊH	А	·			10 ^{8.6} h
B₂ĊCl	А				105.0
B2CCH2CCl3	D + A	6			19
B2CCH2Si-n-Bu3	D + A	0.3	$(6.9 \pm 1.5)^{b}$	$(9.2 \pm 2.0)^{b}$	43
$B_2\dot{C}CH_2P(O)(OEt)_2$	\mathbf{D}^{c}	3.5	$(7.2 \pm 1.5)^{b}$	$(10.8 \pm 2.0)^{b}$	32
B ₂ CCH ₂ SCF ₃	\mathbf{D}^d	0.0014*	10.5 ± 3.0	10.6 ± 4.0	
B ₂ CCH ₂ OCF ₃	D1	8			140
B ₂ ĊCH ₂ C ₆ H ₅	\mathbf{D}^{g}	8,700	8.3 ± 3.0	16.9 ± 4.0	

^a See text. ^b Arrhenius parameters obtained from the best line through the experimental points. However, it is likely that the decays may have some second-order component at the lower temperatures and that the points should be fitted by a curve, not a straight line. ^c P(O)-(OEt)₂ by photolysis of BOOB + (EtO)₂POP(OEt)₂. ^d CF₃S by photolysis of CF₃SSCF₃. ^e Extrapolated. ^f CF₃O by photolysis of CF₃OOCF₃. ^g By photolysis of BOOB and triphenylborane. ^h At 25°.

Table II. Decay of $B_2\dot{C}H$ Generated from $B_2CHC(O)OOB$ in Benzene at 25°

[B ₂ CHC(O)OOB], M	$[\mathrm{B}_2\dot{\mathrm{C}}\mathrm{H}] imes10^{\mathrm{6}},\ M$	$\tau_{1/2}^{25}$ °. sec	
3.3 (neat)	2	0.28	
0.8	4	1.0	
0.3	6	1.9	
0.07	6	2.6	
0.007	2	3.0	

at a number of positions.) Decay occurs with clean first-order kinetics and a good Arrhenius plot is obtained.

At temperatures below 20° this radical is fairly stable and it was observed that, with the light off, if the sample was cooled to -40° the signal height decreased markedly, but the original signal was reobtained (without photolysis) by rewarming to 20°. This is *not* due to reversible dimerization of the radical since the radical concentration, determined by double integration, was essentially the same at the two temperatures (Table III). That is, the lines broaden on cooling so that the

Table III.Effect of Temperature on theHexamethylcyclohexyl Radical

Temp, °C		Epr signal height ^a , ^b	Double integral ^b	
	+20	40	41	
	-40	14	39	
	+20	40	40	

^a Peak to peak on first derivative. ^b Arbitrary units.

hyperfine resolution tends to be lost and the peak height due to the radical decreases without any actual loss of radicals.

Tri-*tert***-butylmethyl radical**, $B_3C \cdot$, was generated by a modified method A in which the epr tube was immersed in boiling water for 30 sec and then dried rapidly and transferred to the epr cavity. Decays appeared to follow reasonably clean first-order kinetics and gave a reasonably good Arrhenius plot. However, the $B_3C \cdot$ concentrations were much smaller than were those of the previously discussed radicals and for this reason the errors in the Arrhenius equation are considerably greater than might be indicated by the deviation of the experimental points from the line.

Generation of $B_3C \cdot$ by method B (impure $B_3CC1: Me_6$ Sn₂: benzene; 1:1:3 by volume) yielded the radical in much higher concentration and it was even longer lived, $\tau_{1/2}^{25^\circ} \sim 21 \text{ min}, \tau_{1/2}^{80^\circ} \sim 2 \text{ min}$. However, at 80° B_3C was present in the sample even in the absence of light, presumably because the B_3CC1 is thermally unstable as is also indicated by our inability to vpc this compound. Measured half-lives of photochemically generated B_3C at *ca*. 80° are not easily related to true decay rate constants and for this reason Arrhenius parameters for decay are not quoted.

Generation of B₃C by method C yielded a very much shorter lived radical with $\tau_{1/2}^{25^\circ} = 0.25$ sec.

Tris(trimethylsilyl)methyl radical, $(Me_3Si)_3\dot{C}$, generated by method A decayed with clean first-order kinetics and gave an excellent Arrhenius plot.⁴ When generated by method B or C²³ the lifetime is very much shorter. All attempts to isolate the radical were unsuccessful (see Experimental Section).

Bis(trimethylsilyl)methyl radical, $(Me_3Si)_2\dot{C}H$, decays rapidly with *second*-order kinetics when generated by method A.⁴

$$2(Me_{3}Si)_{2}\dot{C}H \xrightarrow{k^{2}epr} products$$

The rate constant for decay, k_{epr}^2 , is $10^{8.6} M^{-1} \text{ sec}^{-1}$ at 25°, which is close to the diffusion-controlled limit.⁶

Di-tert-butylchloromethyl radical, $B_{?}\dot{C}Cl$, generated by method A decayed rapidly and with second-order kinetics. In the temperature range -85 to $+32^{\circ}$ decay can be represented by

$$k_{epr}^{2}(M^{-1} \text{ sec}^{-1}) = (10^{10\pm 2})(10^{-5.2\pm 3/\theta})$$

1,1-Di-tert-butyl-2-substituted ethyl radicals, B_2 - $\dot{C}CH_2R$, contain β hydrogens and are therefore, in principle, able to disproportionate, unlike the radicals discussed above.

$$2B_{2}\dot{C}CH_{2}R \longrightarrow B_{2}CHCH_{2}R + B_{2}C = CHR$$

The remarkable steric influence of the di-*tert*-butylmethyl moiety greatly retards this reaction. For the majority of these radicals at the concentrations normally employed (*ca.* 10^{-4} *M*) bimolecular decay, presumably the above disproportionation, does not dominate the kinetics until the temperature has been reduced to -50° or even lower. At ambient temperatures decays appear to follow first-order kinetics, though with $R = P(O)(OEt)_2$ there may be curvature in the Arrhenius plot (see Figure 1), which suggests a significant contribution from the second-order process at the lower temperatures.

When method A was used to generate R from RH (and in certain other cases), the possibility that a chain reaction might influence the decay kinetics was examined by varying the concentrations of the reagents.

 $B_2\dot{C}CH_2R + RH \longrightarrow B_3CHCH_2R + R$

$$R \cdot + B_2 C = CH_2 \longrightarrow B_2 \dot{C} CH_2 R$$

In no case was the first-order decay rate constant affected by the reagent concentration (see Table IV for some typical data).

Table IV. Effect of Reagent Concentration (% v/v) on k_{epr}^1 at 25° for Decay of Two B2CCH2R Radicals

<i>n</i> -Bu₃SiH [RH]	$B_2C = CH_2$	BOOB	k^{1}_{epr} , sec ⁻¹
3	3	94	0.89
21	26	53	0.92
31	38	31	0.94
36	27	37	0.96
42	16	42	0.95
47	6	47	0.95
86	3	11	0.83
(EtO) ₂ POP(OEt) ₂ [RP(OEt) ₂]			
22	11	67	0.17
53	7	40	0.16
80	3	17	0.15
87	2	11	0.15

All the B_2CCH_2R radicals examined, apart from $B_2CCH_2C_6H_5$, had shorter lifetimes than the B_2CH radicals generated by method A. For the majority, the first-order decay rate constant was measured at 25° and the second-order rate constant at -50° . These data are included in Table I.

Discussion

The most interesting feature of the present work is the great lifetime of virtually all B₂CX radicals. Of course, many of the radicals studied could not disproportionate. Their first-order decay kinetics imply that these radicals do not dimerize at any significant rate at the concentrations at which they are generated, and B_2CH did not dimerize even at -130° .⁴ However, the *tentative* identification of B_2CHCHB_2 (3) in the B_2 CHCl + Na reaction implies that some B_2 CX dimens can, perhaps, be formed but not, it would appear, at all readily by radical-radical reactions. Thus, at 25° the bimolecular rate constant for any dimerization of B_2 CH must be less than $10^3 M^{-1}$ sec⁻¹.

The similarities in the values of $\tau_{1/2}^{25^\circ}$, A^{1}_{epr} , and E_{epr}^{1} found for B₂CH, Me₅- and Me₆-cyclohexyl, and $B_3\dot{C}$ radicals (see Table I and Figure 1) suggest that the mechanism of the first-order decay of all four of these radicals is similar. There are three conceivable reactions. Firstly, a pseudo-first-order process in which the radical abstracts hydrogen from a molecule of reactant to produce a much more reactive radical, e.g.

$$\begin{array}{l} B_2\dot{C}H \,+\, B_2CH_2 \stackrel{\rm slow}{\longrightarrow} B_2CH_2 \,+\, BCH_2CMe_2\dot{C}H_2 \\ \\ B_2\dot{C}H \,+\, BCH_2CMe_2\dot{C}H_2 \stackrel{\rm fast}{\longrightarrow} \mathbf{2} \end{array}$$

This possibility can, we believe, be ruled out by the fact that k_{epr}^1 does not appear to depend on the B_2CH_2 (or BOOB) concentration. Furthermore, the A^{1}_{epr} values do not seem to be consistent with this mechanism. That is, under typical experimental conditions in method A the hydrocarbon concentration would be ca. 1 M. The preexponential factor for the slow (ratecontrolling) reaction of the long-lived radical with its parent hydrocarbon, e.g., B2CH with BCH2, would therefore be in the range $10^{11}-10^{15} M^{-1} \text{ sec}^{-1}$. Such a value is far too large for a hydrogen atom abstraction.²⁶

The other two potential reactions are true unimolecular processes: an intramolecular 1,3 hydrogen transfer, 17 e.g.

$$B_2\dot{C}H \xrightarrow{slow} BCH_2CMe_2\dot{C}H_2$$

and a β scission with elimination of a methyl radical, e.g.

$$B_2\dot{C}H \xrightarrow{slow} B(H)C = CMe_2 + Me$$

The latter reaction might be expected to have a preexponential factor of 1013-1016 sec-1 and the former a factor of 10¹⁰-10¹² sec⁻¹.^{27, 28} However, the inaccuracies in our A factors and the difficulty of estimating A factors for reactions involving such sterically hindered radicals prevents a choice between the two reactions based only on kinetic grounds. For either process the observed rate constants for decay will be twice as great as the rate constants for the unimolecular reaction, since the active radical that is formed will, presumably, trap a second B_2CH radical.

We are inclined to favor the methyl elimination on several grounds. First, there is the facile β scission of the primary alkyl radical, $B_2CHCMe_2\dot{C}H_2$ ($\rightarrow B_2\dot{C}H +$ Me₂C=CH₂). Presumably, this β scission is promoted by the relief of steric hindrance in the radical. In the $B_2\dot{C}H$ radical and other like radicals a methyl elimination would also decrease crowding. In contrast, an intramolecular hydrogen transfer in B2CH would change the hybridization of the central carbon from sp² to sp3 which would increase steric hindrance and might therefore be expected to be slow.

A methyl elimination is also somewhat favored by the greater stability of (Me₃Si)₃C compared with B₃C, it being well known that carbon-silicon double bonds are not easily formed.³¹

Although the above arguments favor methyl elimination as the first-order decay process, this could not be

(26) Typical A factors for H atom abstractions are in the range $10^{\circ}-10^{\circ} M^{-1} \sec^{-1.97}$

(27) S. W. Benson, "Thermochemical Kinetics," Wiley, New York, N. Y., 1968.

(28) Although much lower preexponential factors have been reported for some 1,4. and 1,5. intramolecular hydrogen transfers, 28 it is possible that these low values are in error.³⁰

(29) L. Endrenyi and D. J. LeRoy, J. Phys. Chem., 70, 4081 (1966); (29) L. Enderly and D. J. Ostreko, *ibid.*, 73, 2080 (1969); K. W. Watkins, J. Amer. Chem. Soc., 93, 6355 (1971); K. J. Mintz and D. J. LeRoy, Can. J. Chem., 51, 3534 (1973). (30) K. W. Watkins, Can. J. Chem., 50, 3738 (1972).

(31) For recent information on this point, see P. Boudjouk, J. R. Roberts, C. M. Golino, and L. H. Sommer, J. Amer. Chem. Soc., 94, 7926 (1972); P. Boudjouk and L. H. Sommer, Chem. Commun., 54 (1973); D. N. Roark and L. H. Sommer, ibid., 167 (1973); T. J. Barton and C. L. McIntosh, ibid., 861 (1972).

confirmed by product studies (see Experimental Section). That is, the expected olefin, $B(H)C=CMe_2$, was not detected when B_2CH_2 was reacted with thermally generated BO· or when B_2CHCl was reacted with sodium. The absence of olefin provides some support for the slow first-order decay occurring by an intermolecular 1,3 hydrogen transfer. However, as was pointed out (see Experimental Section) the absence of olefin under conditions where the radicals are being generated continuously does *not* rule out its formation during the slow decay of "residual" B_2CH (and other radicals) that is epr monitored. Until B_2CH radicals can be "cleanly" generated in unreactive media and their products analyzed, the question as to their mode of slow decay must remain unanswered.

The preexponential factors for the first-order decay of several of the B₂CCH₂R radicals are impossibly low for true unimolecular reactions. We believe this is due to the incursion of second-order decay processes. That is, at sufficiently low temperatures the B₂CCH₂R radicals decay by a bimolecular reaction that is presumed to be a disproportionation. Some contribution from this process increases the apparent value of k_{epr}^1 to an increasing extent as the temperature is lowered and as a consequence the Arrhenius plots are probably curves rather than straight lines and hence the apparent value of A_{epr}^1 is reduced.

The first-order decay rates for $B_2\dot{C}CH_2R$ radicals increase along the series $R = C_6H_5 \ll OCF_3 \leq CCl_3 < P(O)(OEt)_2 < Si-n-Bu_3 \ll SCF_3$. The reversible addition

of thiyl radicals to olefins has been firmly established in many studies,³² which suggests that the rapid decay of $B_2\dot{C}CH_2SCF_3$ is due to the facile elimination of CF_3S .

$$B_2CCH_2SCF_3 \longrightarrow B_2C = CH_2 + CF_3S \cdot$$

An analogous β scission may be responsible for the first-order decay of most of the other B₂CCH₂R radicals. However, we would not expect the C₆H₅ radical to be eliminated, and in keeping with this the B₂CCH₂C₆H₅ radical is remarkably stable. It probably decays in a manner analogous to B₂CH, B₃C, etc., but it is not clear why it should be more stable than these radicals.

The rapid bimolecular decay of $(Me_3Si)_2\dot{C}H$ and of $B_2\dot{C}Cl$ appears to be anomalous, although it is likely that the former radical is not particularly hindered.³³ The peculiar behavior of $B_2\dot{C}Cl$ is perhaps a consequence of the strong dipole present in this radical, which by dipole-dipole interaction holds pairs of radicals in close proximity to one another for sufficient time for them to react.

Acknowledgment. The work done by one of us (T. T. T.) was supported by the Defense Research Board of Canada, Grant No. 9530-129.

(32) For leading references, see C. Walling, "Free Radicals in Solution," Wiley, New York, N. Y., 1957; W. A. Pryor, "Free Radicals," McGraw-Hill, New York, N. Y., 1966.

(33) For example, $(Me_{3}Si)_{4}C$ can be prepared readily, ³⁴ but $B_{4}C$ has yet to be prepared.

(34) See, e.g., H. Gilman and C. L. Smith, J. Amer. Chem. Soc., 86, 1454 (1964); R. L. Merker and M. J. Scott, J. Organometal. Chem., 4, 98 (1965); G. Kobrich and R. v. Nagel, Tetrahedron Lett., 4693 (1970).

An Electron Spin Resonance Investigation of the 1-Aziridylcarbinyl and Related Free Radicals¹

Wayne C. Danen* and Charles T. West

Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506. Received November 19, 1973

Abstract: The 1-aziridylcarbinyl radical (2) could conceivably prefer a bisected conformation (2a) in which radical stabilization is derived by interaction with the three-membered ring as in the cyclopropylcarbinyl radical or a perpendicular alignment (2b) in which interaction with the nitrogen lone pair is maximized. The 1-aziridylcarbinyl radical has been generated from N-methylaziridine by abstraction of hydrogen by photochemically generated *tert*-butoxyl radicals at -136° . The observed hyperfine couplings, $a^{N} = 10.68$ G and $a_{\alpha}^{H} = 17.07$ G, are consistent with a perpendicular conformation (2b) in contrast to the cyclopropylcarbinyl radical. INDO calculations support this conclusion predicting 2b to be more stable than 2a. At higher temperatures 2 undergoes ring opening to produce 4 in a manner analogous to the cyclopropylcarbinyl radical. Attempts to produce the (1-aziridyl)-1-ethyl radical (7) always gave spectra of the corresponding ring-opened radical 8. An out-of-phase line-width effect in the β -proton splittings was noted for 4 and 8 indicating a significant difference in conformation between these radicals and the related allylcarbinyl radical. It is suggested that a 1,3 interaction between the unpaired electron and the lone pair of electrons on the nitrogen atom may be preferred over interaction with the double bond. Efforts to produce the cyclopropylamino radical (3) yielded the ring-opened radical 11 in solution and the imino species 12 in an adamantane matrix. INDO calculations suggest that the bisected conformation 3a is more stable than the perpendicular alignment 3b.

Cyclopropylcarbinyl radicals have been the subject of investigation for a number of years in order to

(1) (a) Nitrogen-Centered Free Radicals. Part VII. For part VI see W. C. Danen, C. T. West, and T. T. Kensler, J. Amer. Chem. Soc., 95, 5716 (1973). (b) Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work.

determine whether these radicals are nonclassical in nature in analogy to the purported nonclassical cyclopropylcarbinyl cation. Product analyses in systems generating cyclopropylcarbinyl and allylcarbinyl radicals indicated that both exist as classical radicals with the cyclopropylcarbinyl radical as an unstable inter-

Danen, West | Esr Investigation of 1-Aziridylcarbinyl Radical